MPEG-4 absorbs many of the features of MPEG-1 and MPEG-2 and other related standards contributing to this, adding new features such as (extended) VRML support for 3D rendering, object-oriented composite files (including audio, video and VRML objects), support for externally specified Digital Rights Management and various types of interactivity.AAC (Advanced Audio Coding) was standardized as an adjunct to MPEG-2 (as Part 7) before MPEG-4 was issued.
MPEG-4 is still a developing standard and is divided into a number of parts. Companies promoting MPEG-4 compatibility do not always clearly state which "part" level compatibility they are referring to. The key parts to be aware of are MPEG-4 part 2 (including Advanced Simple Profile, used by codecs such as DivX, Xvid, Nero Digital and 3ivx and byQuickTime 6) and MPEG-4 part 10 (MPEG-4 AVC/H.264 or Advanced Video Coding, used by the x264 encoder, by Nero Digital AVC, by QuickTime 7, and by high-definition videomedia like Blu-ray Disc).
Most of the features included in MPEG-4 are left to individual developers to decide whether to implement them. This means that there are probably no complete implementations of the entire MPEG-4 set of standards. To deal with this, the standard includes the concept of "profiles" and "levels", allowing a specific set of capabilities to be defined in a manner appropriate for a subset of applications.
Initially, MPEG-4 was aimed primarily at low bit-rate video communications; however, its scope as a multimedia coding standard was later expanded. MPEG-4 is efficient across a variety of bit-rates ranging from a few kilobits per second to tens of megabits per second. MPEG-4 provides the following functions:
- Improved coding efficiency over MPEG-2[citation needed]
- Ability to encode mixed media data (video, audio, speech)
- Error resilience to enable robust transmission
- Ability to interact with the audio-visual scene generated at the receiver
0 comments:
Post a Comment